Abstract

ABSTRACTCountercurrent flow limitation (CCFL) is a phenomenon that consists of several flow patterns occurring simultaneously which produces a complex gas/liquid interface and interfacial momentum transfer, thus making it one of the most challenging two-phase flow configurations for computational fluid dynamics (CFD) validation. Numerous experimental investigations have been carried out in recent years regarding this, but most of those investigations were performed in small-diameter pipes or in non-pipe geometries (rectangular cross sections). A review of these experimental investigations has shown that the scale and geometry of the test section has a large impact upon the onset and characteristics of the CCFL. In order to provide a better understanding of this phenomenon in an actual pressurized water reactor (PWR) hot-leg geometry at a relatively large-diameter and scale, a test facility with a ∼1/3.9 scale and a 190 mm inner diameter was constructed. Experiments were carried out at atmospheric pressure using water and air. High-speed recording was used to acquire high-quality images of the air/water interface. CCFL mechanisms, flow patterns, and the limits of the onset of CCFL and deflooding were experimentally identified. CFD simulations of two representative cases were carried out and assessed against experimental results. The analysis of the CFD simulations has provided insights into the improvements necessary for the accurate simulation of CCFL in large-scale geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.