Abstract

Gas–liquid two-phase countercurrent flow limitation (CCFL) phenomena widely exist in nuclear power plants. In particular, the gas–liquid countercurrent flow limitation phenomena in a pressurized water reactor (PWR) during a loss-of-coolant accident (LOCA) or a small-break loss-of-coolant accident (SBLOCA) play an important role in nuclear reactor safety research. Over several decades, a series of experimental investigations and numerical studies have been carried out to study the CCFL phenomena in a PWR. For the experimental investigations, numerous experiments have been conducted, and different CCFL mechanisms and CCFL characteristics have been obtained in various test facilities simulating different scenarios in a PWR. The CCFL phenomena are affected by many factors, such as geometrical characteristics, liquid flow rates, and fluid properties. For the numerical studies, more and more numerical models were presented and applied to the calculations of two-phase countercurrent flow over the past several decades. It is considered that the computational fluid dynamics (CFD) tools can simulate most of the two-phase flow configurations encountered in nuclear power plants. In this paper, the experimental investigations and the numerical studies on two-phase countercurrent flow limitation in a PWR are comprehensively reviewed. This review provides a further understanding of CCFL in a PWR and gives directions regarding future studies. It is found that relatively fewer investigations using steam–water under high system pressures are performed due to the limitation of the test facilities and test conditions. There are a number of numerical studies on countercurrent two-phase flow in a PWR hot leg geometry, but the simulations in other flow channels were relatively rare. In addition, almost all of the numerical simulations do not include heat and mass transfer. Thus, it is necessary to investigate the effects of heat and mass transfer experimentally and numerically. Furthermore, it is of significance to perform numerical simulations for countercurrent two-phase flow with a fine computational grid and suitable models to predict the formation of small waves and the details in two-phase flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call