Abstract

The threshold energy barrier for hydrogen desorption from the SiO2–Si interface has been assumed to be the Si–H bond energy with the value of 3.6 eV. Based on the uniform Si–H bond energy and diffusion-limited degradation, the time-dependent hot-carrier degradation of metal–oxide–semiconductor (MOS) devices has been described by the so-called power law. In this letter, by investigating the degradation of submicron n-channel MOS devices at various stress conditions and over a large time scale (0.01–10000 s), we present experimental evidence that contradicts the uniform bond energy theory and supports the bond energy variation theory proposed recently by Hess and co-workers [Appl. Phys. Lett. 75, 3147 (1999); Physica B 272, 527 (1999)]. We find that, instead of a constant power factor of n=0.5 predicted by the uniform bond/diffusion-limited energy theory, n varies from ∼0.8 at the initial stress stage to ∼0.2 at the final stress stage consistent with the bond energy variation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.