Abstract

Nonlinear wave focusing originating from the universal modulation instability (MI) is responsible for the formation of strong wave localizations on the water surface and in nonlinear wave guides, such as optical Kerr media and plasma. Such extreme wave dynamics can be described by breather solutions of the nonlinear Schrödinger equation (NLSE) like by way of example the famed doubly-localized Peregrine breathers (PB), which typify particular cases of MI. On the other hand, it has been suggested that the MI relevance weakens when the wave field becomes broadband or directional. Here, we provide experimental evidence of nonlinear and distinct PB-type focusing in standing water waves describing the scenario of two counterpropagating wave trains. The collected collinear wave measurements are in excellent agreement with the hydrodynamic coupled NLSE (CNLSE) and suggest that MI can undisturbedly prevail during the interplay of several wave systems and emphasize the potential role of exact NLSE solutions in extreme wave formation beyond the formal narrow band and unidirectional limits. Our work may inspire further experimental investigations in various nonlinear wave guides governed by CNLSE frameworks as well as theoretical progress to predict strong wave coherence in directional fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.