Abstract

What is the final state of turbulence when the driving parameter approaches infinity? For the traditional Rayleigh-Bénard convection, a possible ultimate scaling dependence of the heat transport (quantified by the Nusselt number Nu) on the Rayleigh number (Ra), which can be extrapolated to arbitrarily high Ra, is predicted by theories. The existence of the ultimate scaling has been intensively debated in the past decades. In this Letter, we adopt a novel supergravitational thermal convection experimental setup to study the possible transition to the ultimate regime. This system is characterized by the combined effects of radial-dependent centrifugal force, the Earth's gravity, and the Coriolis force. With an effective gravity up to 100 times the Earth's gravity, both Ra and shear Reynolds number can be boosted due to the increase of the buoyancy driving and the additional Coriolis forces. With over a decade of Ra range, we demonstrate the existence of ultimate regime with four direct evidences: the ultimate scaling dependence of Nu versus Ra; the appearance of the turbulent velocity boundary layer profile; the enhanced strength of the shear Reynolds number; and the new statistical properties of local temperature fluctuations. The present findings will greatly improve the understanding of the flow dynamics in geophysical and astrophysical flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call