Abstract

Intermediate chain length (16 ≤i≤ 50) n-alkanes are known to surface freeze at temperatures that are up to three degrees higher than the equilibrium melting point [B. M. Ocko et al., Phys. Rev. E, 1997, 55, 3164-3182]. Our recent experimental results suggest that highly supercooled nanodroplets of n-octane and n-nonane also surface freeze, and subsequently bulk crystallization occurs. The data yield surface and bulk nucleation rates on the order of ~10(15) cm(-2) s(-1) and ~10(22) cm(-3) s(-1), respectively, at temperatures between 180 K and 200 K. Molecular dynamics simulations at the united atom level were used to follow the freezing of a supercooled n-octane drop and show that an ordered monolayer develops on the surface of the droplet almost immediately, and the rest of the droplet then freezes in a layer-by-layer manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.