Abstract

Surface freezing, at temperatures up to a few degrees above the equilibrium melting point, has been observed for intermediate chain length (16≤ i≤ 50) n-alkanes [B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha, O. Gang and M. Deutsch, Phys. Rev. E, 1997, 55, 3164-3182]. Our recent experimental results suggest that surface freezing is also the first step when highly supercooled nanodroplets of n-octane crystallize. Our data yield surface and bulk nucleation rates on the order of ∼1015/cm2.s and ∼1022/cm3.s, respectively. Complementary molecular dynamics simulations also show that the surface of the droplet freezes almost immediately, and freezing of the remainder of the droplet progresses in a layer-by-layer manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.