Abstract

Angle-resolved photoemission spectroscopy (ARPES) is used to study the scattering rates of charge carriers from the hole pockets near Gamma in the iron-based high-Tc hole doped superconductors KxBa1-xFe2As2 x=0.4 and KxEu1-xFe2As2 x=0.55$ and the electron doped compound Ba(Fe1-xCox)2As2 x=0.075. The scattering rate for any given band is found to depend linearly on energy, indicating a non-Fermi liquid regime. The scattering rates in the hole-doped compound are considerably larger than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times bigger than the binding energy indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron and hole doped compounds signals the importance of Hund's exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.