Abstract
ABSTRACT Civil engineering structures made upon expansive soils known in India as Black Cotton (BC) soils are susceptible to structural damages due to their seasonal swell-and-shrink behaviour. This study focuses on assessing the mechanical performance of BC soil stabilised using unconventional binders, specifically Sugarcane Bagasse Ash (SCBA) and Ground Granulated Blast Furnace Slag (GGBS) with different proportions. The experimental evaluation included Compaction tests, Unconfined Compressive Strength (UCS) tests, Triaxial tests, and Atterberg’s limits tests. Additionally, mineralogical and morphological studies were carried out using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and chemical analysis using x-ray fluorescence spectroscopy analysis (XRF). The results showed that the mixture containing 21% SCBA and 9% GGBS produced cementitious-siliceous-hydrate (C-S-H) molecule, which improved the strength. Based on the soil-binder percentage ratio obtained from UCS tests, a regression equation was developed to estimate consolidated soil strength. The regression model, exhibiting an impressive R2 value of 93.69%, was analysed within the framework of existing empirical correlations by other researchers. This statistical model, with its good fit, is a useful tool for evaluating the compressive strength of stabilised expansive soil. The findings provide insights into successful stabilisation solutions for expansive soils found locally and globally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have