Abstract

This paper shows experimental performance evaluation of a new control system for active mass dampers (AMDs). The proposed control system consists of a position controller and neural oscillator, and is designed for the solution of a stroke limitation problem of an auxiliary mass of the AMDs. The neural oscillator synchronizing with the response of a structure generates a signal, which is utilized for switching of motion direction of the auxiliary mass and for travel distances of the auxiliary mass. According to the generated signal, the position controller drives the auxiliary mass to the target values, and the reaction force resulting from the movement of the auxiliary mass is transmitted to the structure, and reduces the vibration amplitude of the structure. Our previous research results showed that the proposed system could reduce the vibration of the structure while the motion of auxiliary mass was suppressed within the restriction; however the control performance was evaluated numerically. In order to put the proposed system to practical use, the system should be evaluated experimentally. This paper starts by illustrating the relation among subsystems of the proposed system, and then, shows experimental responses of a structure model with the AMD excited by earthquakes on a shaker to confirm the validity of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call