Abstract

In this paper, a design method for a PD controller, which is a part of a new active mass damper system using a neural oscillator for high-rise buildings, is proposed. The new system mimicking the motion of bipedal mammals is a quite simple system, which has the neural oscillator synchronizing with the acceleration response of the structure. The travel distance and direction of the auxiliary mass of the active mass damper is decided by the output of the neural oscillator, and then, the auxiliary mass is transferred to the decided location by using the PD controller. Therefore, the performance of the PD controller must be evaluated by the vibration energy absorbing efficiency by the system. In order to bring the actual path driven by the PD controller in closer alignment with the ideal path, which is assumed to be a sinusoidal wave under resonance, firstly, the path of the auxiliary mass driven by the PD controller is analytically derived, and the inner product between the vector of ideal and analytical path is evaluated. And then, the PD gain is decided by the maximum value of the inner product. Finally, numerical simulations confirm the validity of the proposed design method of the PD controller. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call