Abstract
Sub-alpine fir is characterized by its high proportion of wet pockets making it difficult to dry. Since it takes longer to dry, mills experience reduced kiln productivity and increased energy consumption. High temperature drying (HTD) can be an effective approach to accelerate the drying process. In this study, three drying schedules, namely, conservative (control), HTD, and HTD and conservative combined (HTD/Cons), were evaluated when drying green sub-alpine fir 2″ × 4″ dimension lumber. The results indicated that: (1) the drying rates in the HTD and HTD/Cons schedules were increased by 31–150% in comparison to the drying rates obtained for the conservative schedule; (2) although drying stresses observed for the HTD schedule were higher than those that were measured for the conservative schedule, no significant difference in drying stresses was found between the HTD/Cons and conservative schedules; (3) warp was reduced in both HTD and HTD/Cons schedules; (4) neither the HTD nor HTD/Cons schedule showed any significant reduction in modulus of rupture (MOR) and modulus of elasticity (MOE) when compared to the values obtained for the conservative schedule. Diffusion coefficients during HTD for sub-alpine fir were determined and it was found that diffusivity increases with temperature. A mathematical model describing the processes of heating and drying under high temperatures was developed. The results of drying tests showed that the predicted drying curves by the model satisfactorily agree with the experimental data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have