Abstract
While quantum circuits are reaching impressive widths in the hundreds of qubits, their depths have not been able to keep pace. In particular, cloud computing gates on multi-qubit, fixed-frequency superconducting chips continue to hover around the 1% error range, contrasting with the progress seen on carefully designed two-qubit chips, where error rates have been pushed towards 0.1%. Despite the strong impetus and a plethora of research, experimental demonstration of error suppression on these multi-qubit devices remains challenging, primarily due to the wide distribution of qubit parameters and the demanding calibration process required for advanced control methods. Here, we achieve this goal, using a simple control method based on multi-derivative, multi-constraint pulse shaping, which acts simultaneously against multiple error sources. Our approach establishes a two to fourfold improvement on the default calibration scheme, demonstrated on four qubits on the IBM Quantum Platform with limited and intermittent access, enabling these large-scale fixed-frequency systems to fully take advantage of their superior coherence times. The achieved CNOT fidelities of 99.7(1)% on those publically available qubits come from both coherent control error suppression and accelerated gate time.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have