Abstract
The mode I delamination fracture toughness and fatigue strength of thin-section three-dimensional (3D) woven composite materials is experimentally determined. The non-crimp 3D orthogonally woven carbon–epoxy composites were thin (2mm) and consequently their through-thickness z-binder yarns were inclined at a very steep angle (about 70°) from the orthogonal direction. The steep z-binder angle has a marked effect on the delamination toughening and fatigue strengthening mechanisms. Experimental testing revealed that the fracture toughness and fatigue resistance increased progressively with the volume content of z-binders. However, the steep angle caused the z-binder yarns bridging the delamination crack to deform and fail in shear and through-thickness tension, rather than in-plane tension which usually occurs in thick 3D woven composites. Mode I pull-off tests on a single woven z-binder yarn embedded within the composite revealed that the crack bridging traction load, strain energy absorption and failure mechanism were strongly affected by the steep angle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have