Abstract
The stannide family of materials A3T4Sn13 (A = La,Sr,Ca, T = Ir,Rh) is interesting due to the interplay between a tunable lattice instability and phonon-mediated superconductivity with Tc ~ 5-7 K. In Sr3Ir4Sn13 a structural transition temperature T* ~ 147 K associated with this instability has been reported, which is believed to result from a superlattice distortion of the high temperature phase on cooling. Here we report the first experimental study of the electronic structure of a member of this material family - Sr3Ir4Sn13 through measurements of quantum oscillations and comparison with density functional theory calculations. Our measurements reveal good agreement with theory using the lattice parameters consistent with a body-centred cubic lattice of symmetry I-43d of the low temperature phase. The study of the fermiology of Sr3Ir4Sn13 we present here should help inform models of multiband superconductivity in the superconducting stannides.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have