Abstract

Abstract REFERENCE: Freudenmann, T., Unrau, H.-J., and El-Haji, M., "Experimental Determination of the Effect of the Surface Curvature on Rolling Resistance Measurements," Tire Science and Technology, TSTCA, Vol. 37, No. 4, October - December 2009, pp. 254-278. Vehicle and tire manufacturers usually perform rolling resistance measurements on external drums with diameters of 1.71 or 2.0 m. The rolling resistance measured on these test benches is higher than the actual rolling resistance measured on a flat surface. This deviation is caused by the drums’ curvature. In 1979, S. K. Clark aimed to solve this problem by developing a formula, which converts the rolling resistance of a tire measured on a curved surface into the corresponding rolling resistance on a plane. This formula is still used today in ISO and SAE standards. To verify Clark’s universally accepted formula, a research project was initiated at the Universität Karlsruhe. A combined test bench that allows measurements on two external drums of different diameter and a continuous flat track with the same wheel suspension was built up and came into operation. The rolling resistances of six different tires on the three surfaces were measured under variation in operational parameters, such as tire load and inflation pressure. Comparison of converted values from measurements on external drums with flat track measurements showed the necessity for an upgrade of the existing formula. By conducting a multiple regression analysis, which took various tire properties and operational parameters into account, a modified formula was derived. Application of this new formula on the measurement data of the six tires as well as on further measurements showed excellent results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.