Abstract

Experiments designed to measure the fracture toughness of ceramic-metal interfaces over a wide range of phase angles are described, and a simple approach to data analysis accounting for plasticity effects in specifying interfacial toughness is outlined. A modified version of a fixture proposed by Richard and Benitz [ Int. J. Fract. 22, R55 (1983)] is used to apply mixed-mode loadings to silica/copper sandwich specimens. The experimentally observed crack trajectories depend on the phase angle of loading. In general, the tendency for initial propagation of the crack to occur in the ceramic increases as the magnitude of the phase angle increases. The introduction of a modest amount of mixed-mode loading resulted in a substantial increase in fracture toughness, from approximately 2.2 J/m 2 at 3° to 6.4 J/m 2 at 16° and 8.7 J/m 2 at −10°. The data clearly indicate that plasticity effects become increasingly important as the magnitude of the phase angle increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.