Abstract

PurposeThe purpose of this paper is to evaluate the fire resistance of an innovative carbon-reinforced PEKK composite for aeronautical applications. To this end, thermal degradation analysis under inert and oxidative atmosphere is carried out. Moreover, a linear model fitting approach is compared to a generally used isoconversional method to validate its reliability for kinetic triplet estimation.Design/methodology/approachThermogravimetric analysis carried out under inert and oxidative atmospheres, between 25 and 1000°C for three different heating rates (5, 15, 25°C/min), followed by a qualitative SEM observation of the samples before and after thermal treatment. After the reaction identification by TG/DTG curves, an isoconversional analysis is carried out to estimate the activation energy as a function of the reaction conversion rate. For the identified reactions, the kinetic triplet is estimated by different methods and the results are compared to evaluate their reliability.FindingsIn inert case, one global reaction, observed between 500-700°C, seems able to describe the degradation of carbon-PEKK resin. Under oxidative atmosphere, three main reactions are identified, besides the resin degradation, the other two are attributed to char and fiber oxidation. Good agreement achieved between isoconversional and linear model fitting methods in activation energy calculation. The achieved results demonstrate the high thermal resistance of PEKK associated with the ether and ketone bonds between the three aromatic groups of its monomer.Originality/valueThis paper provides a possible degradation model useful for numerical implementation in CFD calculations for aircraft components design, when exposed to high temperatures and fire conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.