Abstract

The paper proposes to reach such external energy which is sufficient for shifting carbide atoms and binding through application of resonance effect on frequencies that corresponds to sound wave spectrum. The energy is used to increase resistance of hard alloys with simultaneous preservation of high characteristics in hardness and density and which are operating under heavy technological conditions with an impact load. Method of aerodynamic strengthening has been developed and patented in order to impart new properties to hard alloys. While carrying out the strengthening the effect is reached due to high-energy action of sound waves on structure of hard alloys at low temperature. Milling of carbide phases and their redistribution, reduction of dislocation in internal structure, improvement structure parameters for specified operational conditions occur in strengthened hard alloys. The obtained results prove a resonance factor of energy deposition while using method of aerodynamic strengthening. It has been experimentally determined that in order to use this strengthening method for hard alloys there are two most efficient processing modes and each of them has up to five clearly expressed resonance amplitude spikes at specific frequencies and the most efficient one is the first mode. Attenuation ratios have been determined while processing hard alloys for every strengthening mode. Results of the research prove the fact that the method of aerodynamic strengthening is an efficient mechanism that changes properties of hard alloys operating with impact loads: improvement of wear resistance in hard alloy plates is reached by 20–40 % upon the expiry of 30 minute operational period while making strengthening at resonance frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call