Abstract
The growing use of DC/DC power converters has resulted in the requirement that their complex controllers be cheaper and smaller, thus using cost-effective implementations. For this purpose, it is necessary to decrease the computational burden in controller implementation to minimize the hardware requirements. This manuscript presents two methods for tuning an adaptive linear–quadratic–Gaussian voltage controller for a battery charger/discharger, implemented with a Sepic/Zeta converter, to work at any operating point. The first method is based on a lookup table to select, using the nearest method, both the state feedback vector and the observer gain vector, solving the Riccati’s differential equation offline for each practical operating point. The second method defines a polynomial function for each controller element that is based on the previous data corresponding to the system operating points. The adaptability of the two controllers to fixed voltage regulation and reference tracking was validated using simulations and experimental tests. The overshoot and settling time results were lower than 11% and 3.7 ms, which are in the same orders of magnitude of a control approach in which the equations are solved online. Likewise, three indices were evaluated: central processing unit capacity, cost, and performance. This evaluation confirms that the controller based on polynomial interpolation is the best option of the two examined methods due to the satisfactory balance between dynamic performance and cost. Despite the advantages of the controllers in being based on a lookup table and polynomial interpolation, the adaptive linear–quadratic–Gaussian has the benefit of not requiring an offline training campaign; however, the cost saving obtained with the lookup table controllers and polynomial interpolation controllers, due to the possible implementation on small-size microcontrollers with development tool simple and easy maintenance, will surely be desirable for a large number of deployed units, ensuring that those solutions are highly cost-effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.