Abstract
We experimentally demonstrate that the addition of partial lattice disorder to a thin-film micro-crystalline silicon photonic crystal results in the controlled spectral broadening of its absorption peaks to form quasi resonances; increasing light trapping over a wide bandwidth while also reducing sensitivity to the angle of incident radiation. Accurate computational simulations are used to design the active-layer photonic crystal so as to maximize the number of its absorption resonances over the broadband interval where micro-crystalline silicon is weakly absorbing before lattice disorder augmented with fabrication-induced imperfections are applied to further boost performance. Such a design strategy may find practical use for increasing the efficiency of thin-film silicon photovoltaics.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have