Abstract
To fundamentally define the cyclic behavior of low yield point steel (LYP) and obtain representative material constitutive parameters for structural analysis, experimental studies of LYP100 and LYP160 steels were conducted under a range of loading scenarios. Monotonic and cyclic loading patterns were used to evaluate overall response characteristics and to quantify strength, ductility and energy dissipation capacity. Based on this experimental data, the essential material parameters of two constitutive models were calibrated. These constitutive models were then employed in structural analysis of previous large-scale steel plate shear wall test specimens, and the analysis results agreed well with the test data. Together, the experiments and analyses conducted in this study indicate that, although the yield strengths of LYP steels are by design less than conventional and high strength steels, characteristics that are important for seismic behavior – such as cyclic response, ductility and energy dissipation capacity – are improved. Cyclic response of LYP steel is characterized by combined isotropic and kinematic hardening, and the isotropic component plays a more significant role. LYP steel is a promising structural material that can be employed more effectively when its cyclic behavior, including appreciable hardening, is defined through experimental studies and constitutive modeling as presented here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.