Abstract

Abstract High-frequency radars (HFR) remotely measure ocean surface currents based on the Doppler shift of electromagnetic waves backscattered by surface gravity waves with one-half of the electromagnetic wavelength, called Bragg waves. Their phase velocity is affected by their interactions with the mean Eulerian currents and with all of the other waves present at the sea surface. Therefore, HFRs should measure a quantity related to the Stokes drift in addition to mean Eulerian currents. However, different expressions have been proposed for this quantity: the filtered surface Stokes drift, one-half of the surface Stokes drift, and the weighted depth-averaged Stokes drift. We evaluate these quantities using directional wave spectra measured by bottom-mounted acoustic wave and current (AWAC) profilers in the lower Saint Lawrence Estuary, Quebec, Canada, deployed in an area covered by four HFRs: two Wellen radars (WERA) and two coastal ocean dynamics applications radars (CODAR). Since HFRs measure the weighted depth-averaged Eulerian currents, we extrapolate the Eulerian currents measured by the AWACs to the sea surface assuming linear Ekman dynamics to perform the weighted depth averaging. During summer 2013, when winds are weak, correlations between the AWAC and HFR currents are stronger (0.93) than during winter 2016/17 (0.42–0.62), when winds are high. After adding the different wave-induced quantities to the Eulerian currents measured by the AWACs, however, correlations during winter 2016/17 significantly increase. Among the different expressions tested, the highest correlations (0.80–0.96) are obtained using one-half of the surface Stokes drift, suggesting that HFRs measure the latter in addition to mean Eulerian currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call