Abstract

A thin-walled pressurised cylindrical shell is sensitive to buckling phenomena when it experiences locally a compressive stress. It is often considered that its behaviour under bending is rather similar to pure compression, but very few are the experimental investigations that precise the real behaviour of a thin pressurised cylinder submitted to a bending load. A large amount of experimental results is presented here, obtained on thin shells (550< R/ t<1450) of moderate length ( L/ R≈2). The evolution of the cylinders' behaviour that has been recorded when internal pressure increases is outlined. It is shown that one must distinguish between local buckling and global collapse of the structure. A comparison of our experimental data to design recommendations given by two standards (NASA SP8007 and Eurocode 3) is finally achieved, putting in advance safety margins provided by these codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.