Abstract
PurposeThis paper aims to present the methodology and results of the experimental characterization of three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) parts utilizing digital image correlation (DIC).Design/methodology/approachTensile and shear characterizations of ABS and PC 3D-printed parts were performed to determine the extent of anisotropy present in 3D-printed materials. Specimens were printed with varying raster ([+45/−45], [+30/−60], [+15/−75] and [0/90]) and build orientations (flat, on-edge and up-right) to determine the directional properties of the materials. Tensile and Iosipescu shear specimens were printed and loaded in a universal testing machine utilizing two-dimensional (2D) DIC to measure strain. The Poisson’s ratio, Young’s modulus, offset yield strength, tensile strength at yield, elongation at break, tensile stress at break and strain energy density were gathered for each tensile orientation combination. Shear modulus, offset yield strength and shear strength at yield values were collected for each shear combination.FindingsResults indicated that raster and build orientations had negligible effects on the Young’s modulus or Poisson’s ratio in ABS tensile specimens. Shear modulus and shear offset yield strength varied by up to 33 per cent in ABS specimens, signifying that tensile properties are not indicative of shear properties. Raster orientation in the flat build samples reveals anisotropic behavior in PC specimens as the moduli and strengths varied by up to 20 per cent. Similar variations were observed in shear for PC. Changing the build orientation of PC specimens appeared to reveal a similar magnitude of variation in material properties.Originality/valueThis article tests tensile and shear specimens utilizing DIC, which has not been employed previously with 3D-printed specimens. The extensive shear testing conducted in this paper has not been previously attempted, and the results indicate the need for shear testing to understand the 3D-printed material behavior fully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.