Abstract
We observe the formation of long-range Cs2 Rydberg molecules consisting of a Rydberg and a ground-state atom by photoassociation spectroscopy in an ultracold Cs gas near 6s1/2(F=3,4)→np3/2 resonances (n=26-34). The spectra reveal two types of molecular states recently predicted by D. A. Anderson, S. A. Miller, and G. Raithel [Phys. Rev. A 90, 062518 (2014)]: states bound purely by triplet s-wave scattering with binding energies ranging from 400 MHz at n=26 to 80 MHz at n=34, and states bound by mixed singlet-triplet s-wave scattering with smaller and F-dependent binding energies. The experimental observations are accounted for by an effective Hamiltonian including s-wave scattering pseudopotentials, the hyperfine interaction of the ground-state atom, and the spin-orbit interaction of the Rydberg atom. The analysis enables the characterization of the role of singlet scattering in the formation of long-range Rydberg molecules and the determination of an effective singlet s-wave scattering length for low-energy-electron-Cs collisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.