Abstract

Generalized quantum measurements (also known as POVMs) are of great importance in quantum information and quantum foundations, but often difficult to perform. We present an experimental approach which can in principle be used to perform arbitrary POVMs in a linear-optical context. One of the most interesting POVMs, the SIC-POVM, is the most compact, set of measurements that can be used to fully describe a quantum state. We use our technique to carry out the first experimental characterization of the state of a qutrit using SIC-POVMs. Because of the highly symmetric nature of this measurement, such a representation has the unique property that it permits all other measurement outcomes to be predicted by a simple extension of the classical Bayesian sum rule, making no use of complex amplitudes or Hilbert-space operators. We demonstrate this approach on several qutrit states encoded in single photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.