Abstract
The bio-mechanical treatment of Municipal Solid Waste (MSW) has been adopted in Europe either as a pre-treatment before landfilling or as a pretreatment before combustion. In this frame, the bio-drying process concerns the aerobic bioconversion applied mainly to MSW residual of selective collection. The aim of this process is the exploitation of the biochemical exothermic reactions for the evaporation of the highest amount of the humidity in the waste, with the lowest consumption of organic carbon. The obtained material can be easily refined to produce Refuse Derived Fuel. The present paper reports original assessments of process parameters characterizing the MSW bio-drying. In particular, outputs of a few pilot scale experimental runs have been elaborated in order to assess the following overall process parameters: mAIR kg of waste, mAIR kg of consumed volatile solids, mAIR kg of initial volatile solids, mAIR kg of organic fraction in the waste. Additionally, the assessed volatile solid dynamics during the bio-drying process are presented. These data are not generally available in the literature. Concerning the organic fraction contents in the waste suitable for bio-drying, usually its application is in the range of about 30-50%. The reasons are: a) lower values can give limited results in term of Lower Heating Value (LHV) increase of the bio-dried material; b) the application to waste with higher organic fraction content has the limitation of starting with very low LHV affecting the final characteristics of the bio-dried material. In this organic fraction range the air flow-rate is significant: it can vary between 6 and 10 m/kgMSW that is similar to the off-gas generable from the incineration of the same waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.