Abstract

Westinghouse Hanford Company plans to install mixer pumps in doubleshell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. Scaled experiments were conducted to characterize the velocity profiles of the floor jet and to quantify the drag coefficients and impact forces for three tank components: radiation dry well, air lift circulator, and steam coil. Jet impact forces were measured on the scaled models at a 4 to 1 range of hydraulically scaled flow rates and a scaled range of distances between discharge nozzle and test component. The test were designed to provide hydraulic similarity between test conditions and expected actual waste tank conditions by using equal Reynolds number the jet maximum velocity impacted the test component. Forces measured on the models were used to calculate expected forces on the full scale components. Correlations of force on the test article versus distance from the nozzle were derived for the radiation dry well and airmore » lift circulator based on the velocity correlation and drag parameter. The force data were also used to derive equivalent drag parameters which accounted for component shape factors including variation of jet impact area on the test article with distance from the nozzle. 8 refs., 44 figs., 42 tabs.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call