Abstract

Thermal generation in wide bandgap semiconductors can be observed by monitoring the capacitance recovery transients of npn (or pnp) storage capacitors in which the middle layer is floating. In this article, we report a study of thermal generation in 4H and 6H silicon carbide (SiC). Three generation mechanisms are identified: bulk generation in the depletion regions of the pn junctions, surface generation at the periphery of the capacitors, and defect generation associated with imperfections in the material. All three generation mechanisms are thermally activated. Bulk generation and surface generation have activation energies of approximately half bandgap, while defect generation exhibits field-induced barrier lowering resulting in an apparent activation energy less than half bandgap. Because the generation rate is extremely low, most measurements are conducted at elevated temperatures (250-350°C). However, we also describe a long-term measurement at room temperature in which the 1/e recovery time appears to be in excess of 100 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call