Abstract

Suspended ceiling and fire sprinkler piping (CP) systems are two of the most common interacting nonstructural elements inside the buildings. While each of these elements individually is prone to losses during the earthquakes, their interaction can even more intensify their associated damage. This article aims to integrate system-level modeling methodology by using existing subsystem-level models in OpenSees platform to simulate the interacting behavior of CP systems. To do so, the numerical model of the CP systems is developed by using a series of previously developed component-level nonlinear models. Experimental results from a shake table study of CP systems installed in a five-story building (fully scaled) are used for the validation of the proposed methodology. Experimental acceleration and displacement responses of CP systems at different locations as well as the damage-progression pattern in the suspended ceiling system are predicted well through the use of the proposed modeling technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.