Abstract
Pressure control characteristics of a three-way high-speed on/off oil hydraulic solenoid valve driven by a PWM signal with a fixed pulse period were theoretically and experimentally analyzed and evaluated. By virtue of its relatively low cost, small size, robustness to contamination, and simplicity of the driving circuit, the three-way on/off solenoid valve is increasingly and widely used for hydraulic pressure or position control applications. In this paper, two formulas are newly derived for the mean and the ripple amplitude of the system pressure that oscillates with the same frequency as that of the PWM driving signal. The formulas indicate that the mean pressure and the pressure ripple amplitude depend on three major system variables that are the on- and the off-times of the valve and a parameter, the system configuration coefficient a, that characterizes the overall feature of the system. The mean pressure and the ripple are then shown to depend on both the duty ratio and the carrier frequency of the PWM driving signal, which disproves Tanaka’s claim that a single variable is enough to describe two quantities. Several aspects of the formulas are discussed. The accuracy of the new formulas is verified by comparing the calculation results to corresponding experimental test results. A method is proposed to obtain the system parameters of the opening and closing-case delay times, the time constants of the valve and a. The selection criteria are established for the major design parameters of the driving signal, i.e., the duty ratio and the carrier pulse frequency, and a basic strategy is proposed on how to suppress the undesirable ripple for a hydraulic servo control system using three-way on/off solenoid valve.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have