Abstract

With the increasing need to reduce greenhouse gas emission and adopt sustainability in combustion systems, injection of renewable gases into the pipeline natural gas is of great interest. Due to high specific energy density and various potential sources, hydrogen is a competitive energy carrier and a promising gaseous fuel to replace natural gas in the future. To test the end use impact of hydrogen injection into the natural gas pipeline infrastructure, the present study has been carried out to evaluate the fuel interchangeability between hydrogen and natural gas in a residential commercial oven burner. Various combustion performance characteristics were evaluated, including flashback limits, ignition performance, flame characteristics, combustion noise, burner temperature and emissions (NO, NO2, N2O, CO, UHC, NH3). Primary air entrainment process was also investigated. Several correlations for predicting air entrainment were compared and evaluated for accuracy based on the measured fuel/air concentration results in the burner. The results indicate that 25% (by volume) hydrogen can be added to natural gas without significant impacts. Above this amount, flashback in the burner tube is the limiting factor. Hydrogen addition has minimal impact on NOX emission while expectedly decreasing CO emissions. As the amount of hydrogen increases in the fuel, the ability of the fuel to entrain primary air decreases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call