Abstract

The electrical performance and reliability of flat- type photovoltaic (PV) modules can be severely affected by elevated cell operating temperature due to elevated ambient temperatures. In this work the free flow front water cooling solutions to enhance flat-type PV module electrical performance is experimentally explored on laboratory scale module operated outdoors under natural light luminance. Water-cooling is implemented using a perforated tube disposed on the top of the panel and a chilled water source, both attached to the module active surface. The cooling water directly wets the module active surface, thereby decreasing the light reflection loss and cleaning the panel surface in the same time. For given meteorological conditions, the efficiency of free water cooling was measured and the corresponding additionally electrical energy yield was determined. The equivalent electric circuit of the PV panel cooling system is developed and an appropriate algorithm for its parameters experimental determination is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call