Abstract

Surface nanocrystallization is an effective approach to bypass the difficulties of synthesizing bulk nanocrystalline material and yet exploit its unique advantages in service. This study uses air blast shot peening over a wide range of coverage (peening time), from conventional to severe, to generate nanostructured surface layers on high strength low alloy steel. Electron microscopy observations were carried out to systematically study the degree and the mechanism of grain refinement as the severity of deformation increases. A model linking finite element simulation of severe shot peening to dislocation density evolution due to the accumulated plastic strain was developed to predict the resultant grain/cell size gradient in the surface layers. The proposed framework establishes a physical connection from processing parameters such as media size, velocity and peening coverage to the resultant structure, opening the possibility of designing a severe surface peening process to achieve a desired nanostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.