Abstract
The application of fused tungsten carbides (FTCs) in nickel-based alloys is important for improving the wear resistance of tooling equipment in the mining industry. However, FTCs are thermally unstable and will dilute under excessive energy input during welding. The parameters affecting dilution in this context are diverse and not yet completely understood. To date, the existing scientific literature focuses on the impact of the melt bead characteristics to explain the degradation during gas metal arc welding (GMAW). The degradation-promoting influence of the droplet transfer mode has not yet been considered. A methodology was developed to experimentally quantify the dependence of the degradation kinetics of FTCs on the droplet transfer mode. The established experimental model demonstrated that the globular transfer mode leads to increased degradation of FTCs in comparison to that of the short-arc mode, which can be attributed to the higher process power and hence higher droplet temperature. In this context, the quantifiable impact of the droplet transfer mode was determined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have