Abstract

In this paper, we substantiated the mechanism behind the absorption and multiple reflection shielding in the nanocomposites (2 mm in thickness) consisting of basalt fiber loaded with carbon nanotubes and polydimethylsiloxane when exposed to an electromagnetic wave of the X-band frequency (8.2–12.4 GHz). The experimental results confirmed that the interface polarization, capacitor-like structure, together with internal conducting networks contributed to the electromagnetic shielding effect in the material. Furthermore, calculation and simulation were employed to analyze the propagation of electromagnetic wave within the nanocomposites, giving direct evidence that the electromagnetic irradiation could be efficiently absorbed while the reflection loss played a marginal role in this process. The findings of this study shed light on the structural design and optimization of the nanocomposites for high-efficiency electromagnetic shielding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call