Abstract

Vibrational properties of diaspore, α-AlOOH, have been re-investigated using room-temperature single-crystal Raman spectroscopy and low-temperature powder infrared (IR) transmission spectroscopy. First-principles harmonic calculations based on density functional theory provide a convincing assignment of the major Raman peaks and infrared absorption bands. The large width of the Raman band related to OH stretching modes is ascribed to mode–mode anharmonic coupling due to medium-strength H-bonding. Additional broadening in the powder IR spectrum arises from depolarization effects in powder particles. The temperature dependence of the IR spectrum provides a further insight into the anharmonic properties of diaspore. Based on their frequency and temperature behavior, narrow absorption features at ~2,000 cm−1 and anti-resonance at ~2,966 cm−1 in the IR spectrum are interpreted as overtones of fundamental bending bands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.