Abstract
Solid-state organic compounds such as &agr;-lactose-monohydrate and biotin have been shown to have narrow and intense THz absorption features at room temperature. Interest in lineshapes in the THz region is justified not only for practical reasons, since they are of crucial importance to spectroscopy-based identification of materials, but also because of the information the line-widths contain about the solid-state physics of the materials. The line-width of THz absorption features (generally from lattice vibrations) in solids is excepted to be inversely proportional to the scattering time of optical phonons. The line-width of absorption features might thus have implications on the solid-state physics of the material, in particular, the interaction of phonons and the phonon density of states. We use a continuous wave THz photomixing system to obtain a high resolution spectrum of &agr;-lactose-mohohydrate and analyze two of its lowest-frequency absorption lines. For comparison we measure the transmission spectra of 5 chemically related saccharides: melecitose, trehalose, maltose, cellobiose, and raffinose. Since &agr;-lactose-monohydrate has a stronger and narrower absorption feature than any of its related saccharides, this comparison study is an important step in understanding the mechanism of THz radiation absorption by organic solids and what line-widths to expect in THz spectroscopy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have