Abstract

Pressure oscillation occurs during the steam jet condensation in water, notably in unstable flow pattern region. Consequently, pressure oscillation may risk the thermal system. In this work, we introduce a method of reducing the pressure oscillation intensity by adding a small amount of air into steam in unstable flow pattern region. The effects of the air content on the unstable flow patterns and pressure oscillation characteristics were studied experimentally. Notably, the air layer showed a periodic accumulation-and-dispersion phenomenon around the steam–water interface. This phenomenon resulted in a periodic and dramatic fluctuation of the interface at a relatively low air mass fraction. When the air mass fraction increased to a critical value, the flow pattern became stable due to a sharp reduction in condensation rate. Accordingly, the pressure oscillation intensity increased and then dropped at the critical air mass fraction, showing a convex-shaped distribution. The air mass fraction should exceed the critical value if air is added into steam to reduce the pressure oscillation intensity. Otherwise, the air could lead to a much stronger pressure oscillation. A theoretical model for the critical air mass fraction was established and could predict the critical air mass fraction within a deviation of ±14%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.