Abstract

The pressure oscillation is an important characteristic of direct contact condensation of steam in subcooled water. Many experimental works have been performed on pure steam submerged jet condensation. However, the effect of non-condensable gas content on the characteristics of the pressure oscillation is not yet fully understood. So, present paper aims to investigate the effect of air mass fraction on the characteristics of the pressure oscillation. Experimental results show that: for pure steam jets, the pressure oscillation dominant frequency decreases with the rise of water temperature and nozzle diameter. While it increases with the rise of steam mass velocity, which is consistent with the most of previous research results. The pressure oscillation intensity increases with the rise of water temperature, steam mass velocity and nozzle diameter. For air-steam mixture gas jets, the effect of water temperature and steam mass velocity on pressure oscillation characteristics is the same as pure steam jets. The pressure oscillation dominant frequency rapidly decreases with the rise of air mass fraction. However, air mass fraction has a complex effect on pressure oscillation intensity. As the air mass fraction increases, the pressure oscillation intensity rapidly increases at first, then slowly decreases and then slowly increases. In addition, new correlations for pressure oscillation dominant frequency and intensity are developed. The predicted results agree well with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.