Abstract
The spectral properties of MBTC (4-((4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-7-methoxy-2H-chromen-2-one), CBTC (4-((4(((5Chlorobenzo[d]oxazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-2H-benzo[h]chromen-2-one) and TBTC (4-((4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)6(tertbutyl)2Hchromen-2-one) were studied in series of solvents with different polarity at room temperature to explore their solvatochromic effect and dipole moment. Stokes shift revealed a bathochromic shift with varying solvent polarity for all molecules which implies π-π*transition. The ground state and excited state dipole moment of the molecules are calculated experimentally using salvatochromic methods like Lippert-Mataga, Bakhshiev, Kawaski-chamma-viallet, and Reichardt's microscopic solvent polarity functions and computationally by density functional theory (DFT) method. It is observed that the excited state dipole moment is higher than the ground state so synthesized molecules are more polar in the excited state than in the ground state. Using the DFT method HOMO and LUMO energy values were obtained and compared with values obtained by the cyclic voltammetry. Using the values of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) we have estimated energy gap, chemical hardness (ɳ), chemical softness (s), ionization potential (IP), electron affinity (EA), electronegativity (χ), electrophilicity (ω), and chemical potential (μ) of the molecules were estimated. The energy gap of MBTC, CBTC, and TBTC were found to be low, that is 3.861eV, 3.822eV, and 3.801eV respectively, this indicates molecules are more reactiveand it has the easiestπ-π*transition. Further electrophilic and nucleophilic sites were figured out using molecular electrostatic potential (MESP) which is useful in photochemical reactions. Hence the quantum chemical calculation and spectroscopic properties of the molecules can give a better understanding of their use in an optoelectronic device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.