Abstract

A combination of experiment and theory is applied to the self-reaction kinetics of phenyl radicals. The dissociation of phenyl iodide is observed with both time-of-flight mass spectrometry, TOF-MS, and laser schlieren, LS, diagnostics coupled to a diaphragmless shock tube for temperatures ranging from 1276 to 1853 K. The LS experiments were performed at pressures of 22 +/- 2, 54 +/- 7, and 122 +/- 6 Torr, and the TOF-MS experiments were performed at pressures in the range 500-700 Torr. These observations are sensitive to both the dissociation of phenyl iodide and to the subsequent self-reaction of the phenyl radicals. The experimental observations indicate that both these reactions are more complicated than previously assumed. The phenyl iodide dissociation yields approximately 6% C(6)H(4) + HI in addition to the major and commonly assumed C(6)H(5) + I channel. The self-reaction of phenyl radicals does not proceed solely by recombination, but also through disproportionation to benzene + o-/m-/p-benzynes, with comparable rate coefficients for both. The various channels in the self-reaction of phenyl radicals are studied with ab initio transition state theory based master equation calculations. These calculations elucidate the complex nature of the C(6)H(5) self-reaction and are consistent with the experimental observations. The theoretical predictions are used as a guide in the development of a model for the phenyl iodide pyrolysis that accurately reproduces the observed laser schlieren profiles over the full range of the observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call