Abstract
We investigate experimentally and theoretically the band structure of the (In0.53Ga0.47As)1−z (In0.52Al0.48As) z digital alloy grown by using molecular beam epitaxy as a function of z, where z is defined by the thickness fraction of the InGaAs and the InAlAs layers lattice-matched to InP. To calculate the band structures of the InGaAs/InAlAs digital alloy, we used the 4 × 4 k·p method; then, we compared these band structures with the photoluminescence experimental results. These experimental and theoretical results show that the InGaAs/InAlAs digital alloy not only can contribute to the method of band-gap engineering by using various types of thickness combinations but also can cover the wavelength gap of 1.2 μm (1.1 μm (GaAs) < λ < 1.3 μm (InP)), that only the quantum dot can cover. We also propose a quantum-well structure that is able to cover the wavelength gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.