Abstract
Molten salts play a key role in the heat transfer and thermal energy storage processes of concentrated solar power plants. A novel composite material was prepared in this work by adding micron-sized magnesium particles into Li2CO3-Na2CO3-K2CO3 molten salt, the heat transfer and thermal energy storage properties of the composites were studied experimentally. A stable composite nanofluid can be obtained, and a thermal conductivity of 0.728 W/(m·K) at 973 K with an enhancement of 31% is achieved for the Mg/molten carbonate nanofluid. And the strengthening mechanism of thermal conductivity was revealed by using ab-initio molecular dynamics method. It is found that the main bonding interactions exist between Mg and O atoms at the surface of Mg particles. A compressed ion layer with a more compact and ordered ionic structure is formed around Mg particles, and the Brownian motions of Mg particles lead to the micro-convections of carbonate ions around them. These factors are helpful to the enhancement of thermal conduction with the improved probability and frequency of ion collisions. This work can provide a guidance for further studies and applications on metal/molten salt composites with enhanced heat transfer and thermal energy storage capacity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have