Abstract

ABSTRACTThe experimental infrared (IR) spectrum of composite wax powder was investigated. The frequency shifts of the C=C anti-symmetrical stretching mode were observed and the experimental cooperativity effect involving Na+···π interaction was suggested. In order to further reveal the nature of cooperativity effect, the interaction energies in Mn+···coronene···CH4 (Mn+ = Li+, Na+, K+, Be2+, Mg2+ or Ca2+) as the model systems of composite wax powder were calculated by using the B3LYP, M06-2X and MP2 methods with 6-311++G** basis set. The results show that the Mn+···π interactions were strengthened upon the formation of ternary complexes. Although the changes of absolute values of the interactions between CH4 and coronene were not obvious, the relative values were considerably significant upon the formation of ternary complexes. The cooperativity effect was perhaps the reason for the formation of notable advantage of composite wax powder upon the introduction of surfactant with cation into wax powder. Reduced density gradient and atoms-in-molecules analysis confirm the cooperativity effect in Mn+···coronene···CH4, and reveal the nature of the formation of the predominant advantage of composite wax powder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call