Abstract

In this research, differential pulse voltammetry (DPV) coupled with experimental design, was used for determination of p-hydroxybenzoic acid (PHB) in cosmetics. Optimization of effecting parameters was carried out based on rotatable central composite design (RCCD) and response surface methodology (RSM) at the surface of a nanostructured electrode for achieving the best sensitivity. Sol-gel process was used for synthesize of nickel titanate (NiTiO3) nanoceramics. The structural and morphological characterization of the nanoparticles was studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Then the NiTiO3 nanopowders were used for surface modification of a carbon paste modified electrode (CPE). Surface characterization of the electrode was accomplished using SEM, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. Under the optimized conditions, the voltammograms exhibited two linear dynamic ranges of 0.7–80.0 μM and 80.0–1000.0 μM for PHB with the detection limit of 62.0 nM (S/N = 3). Finally the NiTiO3 nanoceramics modified carbon paste electrode (NiTiO3/CPE) could be employed for the determination of PHB in real samples with satisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call