Abstract

The onset of natural convection in a 2D air filled cavity open at the top with adiabatic side walls is studied. The numerical model shows the existence of weak convective flow near the top corner of a cavity due to the thermal gradient between the walls and the atmosphere even at low Rayleigh numbers, as also confirmed by the interferometry-based experimental data. Additionally, a thermally stratified layer is formed on the lower side of the cavity. The onset of convection is seen to be dependent on the interaction of these two features in the cavity. Results of the study show that in low aspect ratio cavities, the thermally stratified layers are clearly formed and are not significantly disturbed by the flow at the corners. The onset of convection takes place in these earlier thermally stratified layers beyond a certain Rayleigh number. This convective movement is characterized by a sudden jump in the heat transfer coefficient at a critical Rayleigh number. However, for high aspect ratio cavities, the flow at the corners has significant influence on the stratified layers and results in a decrease in the value of critical Rayleigh number. Beyond a certain aspect ratio, these layers cannot be formed and hence there is no onset of convection. Simulations as well as the interferometric measurements show an inherent symmetry in the corner flows, which was seen to breakdown due to the flow-induced instabilities in the thermally stratified layers for Rayleigh numbers greater than the critical value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call