Abstract
The combined effect of gravity modulation and rotation on the onset of thermal convection in a horizontal fluid layer and a fluid-saturated porous layer is studied analytically using linear stability theory. The regular perturbation method based on small amplitude of modulation is employed to compute the critical value of Rayleigh number and wavenumber. We considered in the present paper only synchronous mode. The correction critical Rayleigh number is calculated as a function of Taylor number, Prandtl number, Darcy number, frequency of the modulation, normalized porosity, and viscosity ratio. It is shown that in general the gravity modulation produces a stabilizing effect in case of viscous fluid layer and both destabilizing and stabilizing effects in case of Brinkman porous layer while it produces a destabilizing effect in case of Darcy porous layer. The low frequency gravity modulation is found to have a significant effect on the stability of the system. It is shown that the onset of convection can be advanced or delayed by proper tuning of various governing parameters. The results of Darcy limit and viscous flow limit are derived as the degenerate cases of Brinkman model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.