Abstract

Numerical simulation is performed to demonstrate that hemodynamic factors are significant determinants for the development of a vascular pathology. Experimental measurements by particle image velocimetry are carried out to validate the credibility of the computational approach. We present a study for determining complex flow structures using the case of an anatomically realistic carotid bifurcation model that is reconstructed from medical imaging. A transparent silicone replica of the artery is developed for in-vitro flow measurement. The dynamic behaviours of blood through the vascular structure based on the numerical and experimental approaches show good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.